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POLYNOMIAL SOLUTIONS IN PROBLEMS 
OF CONTROLLING THE HEATING OF SOLIDS 

I. B. Sorogovets, E. I. Goncharov, and 
V. B. Artem'ev 

UDC 518:519,3:62-50 

We consider an approximate method of solving the problem of  optimum control of  the process that is 
described by a homogeneous heat-conduction equation. The governing parameter enters the boundary 
condition, while the integral quadratic expression is subjected to minimization. A solution o f  the problem 
is found for a class of controls described by a polynomial o f  finite degree. An example is considered. 

One of the trends in solving the problem of  reducing the energy consumed in manufacturing products 
is the industrial implementation of regimes of heating solids that ensure the smallest expenditures of  thermal 
energy with a high quality of the materials and items produced. The processes of heat treatment of  concrete 
and ferroconcrete to accelerate solidification at contemporary enterprises of the building industry require the 
expenditure of energy resources that greatly exceeds the theoretically possible ones to ensure the necessary 
strength of items; therefore, of current interest is the search for heating regimes that would be satisfactory as 
regards heat expenditures. 

The analytical relations that make it possible to determine the optimum values of the temperature of a 
heating medium during the heating of concrete and ferroconcrete items can be obtained from the solution of 
the system of differential equations that model the process of heat treatment. 

Let the controlled process be described by the function 0(x, F) that in the region Q = (0 <x  < 1, 
0 < F < T ) satisfies the heat-conduction equation 

O0 020 F o~0 
- - + - - - - ,  F = 0 , 1 , 2 ,  (1) 

OF ax 2 x ax 

and at the boundary Q satisfies the conditions 

o o  (0, F) 
0 ( x ,  0 )  - - -  

3x 
= o ; ( 2 )  

O0 (1, F) = Bi ( 0  m (F) - 0 (1, F)) .  
0x 

(3) 

It is required to find the governing function 0m(F) for which the functional 

1 T 

J (Om)= I (0 (x, T) -¢p (x))2X Fdx + ~3 10m (F) dE,  
o 0 

(4) 

where q)(x) is the given function and [3 > 0, takes on the least value [1]. 
Problem (1)-(3) at F = 0 was considered in [1], where the solution in the class of piecewise-constant 

functions is given. In [2, 3], the solution of this problem is found in the class L2, and the means of  construct- 
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ing approximate solutions is given. We note that the theoretical justification of the method in [2, 3] involves a 
fair number of  difficulties. 

We will seek an approximate solution of the posed problem in the form of the polynomial 

0 m (F) = q,F + q2 F2 + ... + qm Fm, 0 m (0) = 0.  (5)  

The basis for approximation (5) is the fact that any function from the class L2 can be represented, with 
any degree of accuracy, by a polynomial [4]. 

We take from [5] the solution of problem (1)-(3): 

'~ F 

Or(p.,, x) ; l'tn0m (Fl) exp (~t 2 , (F l - F)) dF l = o (x. F) = ~ .  r. Vr(~.) 
n=l 0 

m 
• r (~t. x) 

= E qk E rn g,, Vr(p-n ) ank (F), (6) 
k=l n=l 

where Or(~) and Vr(~) are the functions defined in [5]; ~tn are the roots of the characteristic equation Or  (kt)Bi 
= Vr(I.t)gt; 

F 
2 Bi 2 

; a,, k (/7) = exp ( -  la-'.F) ; F (  exp (p-2nF,)dF,. (7) 
r. = p] +Bi2 +(1 - F) Bi 

0 

Substituting expressions (5) and (6) into Eq. (4), we find 

l i t  n !  

J (Om) = E Akl qk ql + 2 E Bk" qk + Bo" (8) 
k J=O k=- 1 

The values of the coefficients A~4 = Ark, Bk, and Bo are found from the following expressions: 

ii I Akt = ; x r  Z rn p-n ank (T) rj p-j ' ajl (T) dx 
o ("=~ Vr(p-.) ~ vr(o)  

+ 

T 

0 nj=l  

1 T k+l+ 1 

r n ~t,, rj ~tj a n k (T) ajl (T) ~ x r O r (p.nx) OP t- ( p-j x) dx + k + l +-----'~ p" 
Vr (o,,) Vr (~t s) o 

Since 

we have 

| 
1 | 0  f o r  j ~ : n ,  

o | - -  for j = n ,  [ r,, 

o Z k+/+l 

Akl = E r,z P--~ ank (7) a,l (T) + k + 1 +------~ 
n =  1 

(9) 
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oo 

r~ ~t. 
Bk = -  ~ ,  V r ( , . )  ~"* (7") ~ , 

n = l  

(10) 

1 

where (I) n = j" XF~(X)CYPI"QAnX)dX ( f o r  ~p(x)  = l (Pn - -  - -  

0 

the expansion in te rms  o f  the system {~r(N~x)}; 

vr(~t.)o) 
~tn 

are the Fourier coefficients of  the function q)(x) in 

1 

Bo = f x r (p2 (X) dx . 

0 
(11) 

Thus, the functional  J(0m) becomes a quadratic function of  the variables qb  q2 . . . . .  qm. The ext remum 
values of  the coeff icients  ql . . . . .  qm can be found f rom the system of  equations 

m 

1 OJ Z A k t q l + B k  0 ,  k = l , 2 ,  m .  (12) 
2 0q~ . . . . . .  

k=l 

To investigate sys tem (12), we will introduce the linear set {1} of  convergent sequences: 

l = ( P ( F ) , a l ,  a 2 .... ) ,  

where F ~ [0; 7]; 0 = (0, 0 . . . .  ); P(F) are the finite-degree polynomials. 
For any two elements  f rom {l} 

/ ~  (1) (1) 
11 = ( P I t r ) ,  a I , a 2 . . . .  ) ,  12 = (P2 (F), a~ 2), a2(21, ...) 

we introduce the binary operation 

T 

. 2  (I) (2) 
( l l ; 1 2 ) = ~ f P  l ( t O P 2 ( F )  d F +  Z r,,ptnan an " 

0 n=-I 

It can easily be verified that the operation (ll; 12) satisfies all the conditions o f  determining the scalar 
product [4]. 

Note further that the sequences 

a k = ( F  k , a l k (T ) , a2k (T )  ... .  ) ,  k = l , 2  ..... m ,  

belong to {1} and f o r m  a linearly independent sys tem (this follows already f rom the fact that the set of  the 
degrees F, F 2 . . . . .  F m is linearly independent). Expressions (9) show that A~. / = (ak; al), i.e., the matrix 

A [A~ 1 "'" A!m], 

Arn I ... Atom) 
which is the Gram matr ix  of  the linearly independent  system ak (k = 1 . . . . .  m), is positive definite, det A > 0. 
From this it follows that system (12) has only one solution: 
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Moreover,  the second differential 

0 0 o (13)  
q p  q2 . . . . .  qm" 

m 

d 2 j =  Z A k l h k h l  

k.l= 1 

is the quadratic form with the positive-definite matrix A, i.e., d 2 j > 0 ,  and solution (13) is the point of  the 

min imum of  the functional J(0m). 
The proposed method makes it possible to seek the optimum regimes of  heat t reatment  of  solids, se- 

lecting the rise in temperature by the linear, quadratic, or any other polynomial law. The necessary calculations 

can be made  in each specific case with the aid of  a computer. 

To illustrate the proposed method, we will consider an example from [3]: 

--=30 ~)20. O(x ,O)=~O[  = 0 ;  

OF 0x 2 '  aXJx=0 

1 T 

1 001 = 0 m ( F ) _ 0 ( l , F ) ;  J ( O m ) = f ( O ( x , T ) _ l ) 2 d x + f O 2 ( F ) d F ,  
Bi ~xx ~-1 o 0 

where 0 < 0m(F) < 1, T = 10, and Bi = 0.5. 
To  attain an accuracy of  10 -6, the number  of  terms in series (6), (9), and (10) must  be N > 3 0 .  In the 

work we selected N = 100. 
The  coefficients ank are calculated following the recurrence formula 

T 1 ", 1 
ant = --7 + ~ (exp ( -  laST) - 1) ; a,, k = --5_ ( T k  - kan .k - l ) .  

~t n ~t,, ~t,, 

Instead of  the coefficients qk we will seek Pk = qk 7~, k = 1, 2 . . . . .  m. Here a,~k should be replaced by 

~nk, defined by the formulas 

anl = , 4 ( e x p ( - g n T ) - l ) ;  "ank = 1 - -  an,k_l , 

and the value of  the functional J(0n0 will be written in the form 

J (0m) = 1 - B I P  l - B z P  2 - ... - B m P  m . 

Performing the calculations, we obtain for m _< 5 

A l t =  3.92635, Ale = 2.99397, AI3 = 2.42559, A14 = 2.04153, Al5 = 1.76405; 

A22 = 2.41157, A23 = 2.02135, A24 = 1.74106, A25 = 1.52972; 

A33 = 1.73430, A34 = 1.51942, A35 = 1.35234; 

A44 = 1.34858, A45 = 1.21266; 
A55 = 1.09958; 
B1 = 0.76994, Be = 0.64113, B3 = 0.55222, B4 = 0.48627, B5 = 0.43506. 
Solving system (12) that corresponds to the considered problem, we find 

m = 2 : J(0m = 0.82631, P1 = -0 .12436,  P2 = 0.42025; 

m = 4 : J(0n0 = 0.82494, Pl = -0 .13853,  P2 = 0.42974, P3 = 0.01124; 
m = 4 : J(0nO = 0.82315, P1 = 0.09364, P2 = -0.12405,  P3 = -0.00039,  P4 = 0.37944;  
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m = 5 : J(0m) = 0.82313, PI  = 0.05292, P2 = 0.02591, P3 = 0.00001, P4 = 0, P5 = 0.27470. 
The values of J(0m) at m = 4 and m = 5 coincide with the values found in [3]. 

N O T A T I O N  

x, F, 0, and 0m, coordinate, time (Fourier number), temperature of the body, and temperature of the 
heating medium (nondimensional); Bi, Biot number; J(0m), minimized functional. 
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